skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jing, Liang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Zircons widely occur in magmatic rocks and often display internal zonation finely recording the magmatic history. Here, we presented in situ high-precision (2SD <0.15‰ for δ 94 Zr) and high–spatial-resolution (20 µm) stable Zr isotope compositions of magmatic zircons in a suite of calc-alkaline plutonic rocks from the juvenile part of the Gangdese arc, southern Tibet. These zircon grains are internally zoned with Zr isotopically light cores and increasingly heavier rims. Our data suggest the preferential incorporation of lighter Zr isotopes in zircon from the melt, which would drive the residual melt to heavier values. The Rayleigh distillation model can well explain the observed internal zoning in single zircon grains, and the best-fit models gave average zircon–melt fractionation factors for each sample ranging from 0.99955 to 0.99988. The average fractionation factors are positively correlated with the median Ti-in-zircon temperatures, indicating a strong temperature dependence of Zr isotopic fractionation. The results demonstrate that in situ Zr isotope analyses would be another powerful contribution to the geochemical toolbox related to zircon. The findings of this study solve the fundamental issue on how zircon fractionates Zr isotopes in calc-alkaline magmas, the major type of magmas that led to forming continental crust over time. The results also show the great potential of stable Zr isotopes in tracing magmatic thermal and chemical evolution and thus possibly continental crustal differentiation. 
    more » « less
  2. Abstract The chemical composition of the deep continental crust is key to understanding the formation and evolution of the continental crust. Constraining the chemical composition of present‐day deep continental crust is, however, limited by indirect accessibility. This paper presents a modeling method for constraining deep crustal chemical structures from observed crustal seismic structures. We compiled a set of published composition models for the continental crust to construct functional relationships between seismic wave speed and major oxide content in the crust. Phase equilibria and compressional wave speeds (VP) for each composition model were calculated over a range of depths and temperatures of the deep crust. For conditions within the alpha(α)‐quartz stability field, robust functional relationships were obtained betweenVPand major oxide contents of the crust. Based on these relationships, observedVPof the deep crust can be inverted to chemical compositions for regions with given geotherms. We provide a MATLAB code for this process (CalcCrustComp). We apply this method to constrain compositions from deep crustalVPof global typical tectonic settings and the North China Craton (NCC). Our modeling results suggest that the lower crust in subduction‐related and rifting‐related tectonic settings may be more mafic than platforms/shields and orogens. The lowVPsignature in the deep crust of the NCC can be explained by intermediate crustal compositions, higher water contents, and/or higher temperatures. The chemical structure obtained by this method can serve as a reference model to further identify deep crustal features. 
    more » « less